Trees, Forests and People 21 (2025) 100928

Contents lists available at ScienceDirect

Trees, Forests and People

ELSEVIER journal homepage: www.sciencedirect.com/journal/trees-forests-and-people

Assessing the recovery of tropical forest structure, canopy closure and
above-ground carbon during restoration: Comparing conventional with
instrument-based metrics

Waiprach Suwannarat ™', Stephen Elliott "' ®, Worayut Takaew " Pornpawee Laohasom ",

Watit Khokthong "

@ Environmental Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
b Forest Restoration Research Unit, Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand

ARTICLE INFO ABSTRACT
Keywords: Carbon accumulation and structural development are key indicators of the progress of forest-ecosystem resto-
Forest ecosystem restoration ration. However current techniques of quantifying them are time-consuming, labor-intensive and costly.
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Therefore, we tested four instrument-based metrics (vegetation area index (VAI) from terrestrial LiDAR (light
detection and ranging), leaf area index (LAI) from a plant-canopy analyser, and canopy cover, from both
Structural metrics hemispherical photography (CC_HP) and a densiometer (CC_D)), as alternatives to conventional metrics (above-
Forest canopy cover ground carbon (AGC), tree stocking density (TSD) and basal area (BA)), derived from manual measurements of
trees. The study sites were: a control (pre-restoration conditions), 1%- and 11-year-old forest, both undergoing
restoration by the framework species method (FSM), and primary forest of indeterminate age (restoration target).
VAI, LAI and CC_D, clearly distinguished among the control site and 1%- and 11!-year-old-restoration (P <
0.05). CC_HP failed to distinguish the control plot from young restoration. All four metrics correlated well (r =
0.58-0.80) with conventional metrics (above-ground carbon (AGC), tree stocking density (TSD) and basal area
(BA)), when data were combined across all plots, although plot-level correlations weakened, with increasing
structural development. Furthermore, the instrument-based metrics failed to reflect a doubling in AGC between
11Ys-year-old restoration and the reference forest, by under-estimating increases in structural development
beyond canopy closure. CC_D is recommended for monitoring structural development, during early forest
restoration, due to its cost-effectiveness, ease of use and minimal disturbance of the forest understory. After
canopy closure, AGC remains the most useful metric to gauge how closely restoration achieves reference-forest
structure. After 11% years of implementing the FSM, AGC had reached 49 % (65.9 tC/ha, +SD 30.44) of the
reference forest level (137.4 tC/ha, +SD 83.19).

DTM Digital terrain model

o EV Exposure value

Abbreviations FSM Framework species method

AGB Above-ground biomass GBH Tree girth at breast height
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RF Reference forest

TLS Terrestrial laser scanning
TSD Tree stocking density
VAI Vegetation area index

1. Introduction

Throughout the tropics, efforts to restore forest ecosystems on
degraded land are intensifying, as billions of trees are planted to combat
biodiversity loss and to meet the ambitious targets of global and regional
initiatives to tackle climate change (UN Decade on Restoration, n.d.;
FAO, 2024). As evidence accumulates that restoring tropical forest
ecosystems sequester carbon more rapidly than other land-use-change
(LUC) solutions to climate change (Sacco et al.,, 2021; Jantawong
et al., 2022), the need for more efficient and less intrusive monitoring, to
verify such results, grows.

Forest restoration usually combines assisted natural regeneration
(Shono et al., 2007) with tree planting, to recover ecosystem biomass,
structural complexity, biodiversity and ecological functionality close to
pre-disturbance levels. Both planted and naturally regenerating trees are
subject to intensive maintenance (weeding and fertilizer application)
over the first two years, to initiate canopy closure, after which, the
ecosystem ideally becomes self-sustaining (Elliott et al., 2013). Progress
towards achieving these goals requires frequent and accurate moni-
toring, so that subsequent restoration methods, including species se-
lection and maintenance regimes, can be adjusted for optimum results.
Such so-called “adaptive management” is well recognized as an essential
component of ecological restoration (Gilmor, 2007).

Monitoring is conventionally performed by measuring tree heights
(with a pole or clinometer) and tree girth at breast height (with tape
measures). When combined with species-specific wood-density data
(usually obtained from online databases (Zanne et al., 2009)), such
ground-based measurements can be used to estimate above-ground tree
carbon (AGC), using allometric equations (Chave et al., 2014; Liu et al.,
2023; Pati et al., 2022). In northern Thailand, Pothong et al. (2022)
developed such equations, specifically for the forest trees of the region.

Such field measurements are labor-intensive, often involving large
teams of people, who can inadvertently trample young tree seedlings,
which could impede the forest’s future carbon-absorption capacity.
Furthermore, these measurements are rooted in traditional production-
forestry practices; they do not directly assess those tree components
responsible for carbon absorption into the ecosystem via photosynthesis,
i.e., the leaves and their arrangement in tree crowns. To anticipate
future carbon-storage potential of forests undergoing restoration, it
therefore makes sense to include forest-canopy metrics, as they are likely
to be related to a forest’s subsequent photosynthetic capacity. Canopy
cover (CC) is one such metric; the proportion of forest floor that is
covered by the amalgamation of tree crowns, which form the forest
canopy (Jennings et al., 1999; Seidel et al., 2011). Some high-tech
methods (e.g. LiDAR (light detection and ranging), hemi-spherical
photography, canopy analyzers etc. (Beckschafer, 2015; Chianucci
et al., 2015; Dassot et al., 2011)) are currently being considered, to
determine canopy metrics and other elements of forest structure. Such
techniques are expensive and can only be used by expert specialists
currently, rendering them inaccessible to community groups,
non-governmental organizations etc. Therefore, it is necessary to
consider whether such advanced technologies are accurate and cost
effective, compared with conventional techniques.

Consequently, in this paper, we compare conventional tree mea-
surements with four instrument-based methods, which focus on various
forest-canopy metrics: (i) vegetation area index (VAI), from point clouds
derived from terrestrial LIDAR (Suwannarat et al., 2024), ii) leaf area
index (LAI) (Chianucci et al., 2015), using a plant canopy analyser, (iii)
canopy cover from hemi-spherical photography (CC_HP) (Beckschafer,
2015) and (iv) canopy cover, using a forest densiometer CC_D
(Russavage et al., 2021). Our study also explored some of the limitations
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of these techniques e.g. woody elements that obscure leaves, over- or
under-exposed hemispherical photos and nonuniform distribution of
points in LiDAR point clouds (Cerny et al., 2019; Loffredo et al., 2016;
Taheriazad et al., 2019).

We tested the hypothesis that forest canopy metrics, measured by the
four instrument-based techniques listed above, could be used to monitor
and differentiate states of restoration of upland evergreen-forest in
northern Thailand.

2. Materials and methods
2.1. Study sites

Data were collected from 18th November to 17th December 2023 at
Mon Cham viewpoint, near the village of Nong Hoi in Chiang Mai
Province, northern Thailand (18° 56° 18.0'N, 98° 49’ 16.7'E), at an
elevation of 1300 m above sea level. The original vegetation of the site
had been upland evergreen forest (Maxwell and Elliott, 2001), which
had mostly been cleared and converted to agriculture in the 1960-70's,
subsequently abandoned, and overgrown by herbaceous weeds and
grasses. Four contrasting study sites were demarcated in close proximity
to one another: i) remnant undisturbed forest (i.e. reference forest (Gann
et al., 2019): RF), ii) 11's-year-old restoration forest, planted with trees
in 2012 (R12), iii) 1'%-year-old restoration forest, planted with trees in
2022 (R22) and iv) degraded land, dominated by herbaceous weeds, not
planted with trees (control: CT) (Fig. 1).

The framework species method (FSM) had been applied in the two
restoration sites. This method of forest-ecosystem restoration involves
planting tree species that are characteristic of the reference forest, which
also exhibit high survival and growth rates on exposed areas, and are
able to inhibit herbaceous weed growth and attract seed-dispersing
animals (by producing fruits or habitat structures at a young age)
(Elliott et al., 2022). The FSM is known for rapid carbon accumulation,
with above-ground tree carbon approaching that of reference forest
within 20-30 years (Jantawong et al., 2017).

2.2. Conventional assessment of above-ground tree carbon using an
allometric model and basal area

In each of the four study sites, eight circular sample plots of radius 5
m were established. Within each circle, the height (m) and girth at breast
height (GBH (cm)) of all trees with GBH > 5 cm were measured. GBH
was measured using a tape measure, whilst tree heights were deter-
mined using an extendable pole (for trees up to 10 m tall) or a clinometer
(for trees taller than 10 m). GBH was converted to tree diameter at breast
height (DBH) by dividing by pie.

The species of each tree was recorded by an experienced team of
restoration ecologists and the species-specific wood density obtained
either from Pothong et al. (2022) or from the Global Wood Density
Database (Zanne et al., 2009). For species with multiple published
values of wood density, the species mean was used. For non-listed spe-
cies, genus means were used and for those without genus means, the
mean value for all northern Thailand trees in Pothong’s study was
substituted (0.52 g/cm3).

The following allometric equation from Pothong et al.’s study of
northern Thailand trees was used to estimate the above-ground biomass
of each tree (Eq. (1)). We also applied an average carbon content value
of 44.84 % (also reported by Pothong et al. for the trees of northern
Thailand). Thus, the amount of carbon stored in each tree could be
estimated using Eqs. (1) and (2).

Above — ground biomass(AGB) = ax (DBH? ><H><WD)b @
Above — ground carbon (AGC) = 0.4484 x AGB 2)

... where, AGB is an individual tree’s above-ground biomass (kg), DBH is
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Fig. 1. Sample-plot locations at Mon Cham, within each of the four study sites: RF (the reference forest, 0.68 ha), R12 (restoration forest planted in 2012, 0.51 ha),
R22 (restoration forest planted 2022, 1.26 ha) and in CT (non-planted control site, 0.23 ha). Interior views of the sites are presented in the supplementary materials

(Figure S1).

tree diameter at breast height (cm) (GBH/pie), H is tree height (m) and
WD is wood density (g/cm®). For trees of DBH=1.6 to 20.0 cm, the
values used for the parameters ‘a’ and ‘b’ were 0.134 and 0.847,
respectively. However, for trees of DBH>20.0 cm, the parameter values
used were 0.067 and 0.976, respectively. Parameter values were
empirically derived by Pothong et al. (2022), from felling and measuring
76 trees. AGC of all trees in each circle was summed, and the mean
total/circle converted into an estimate of tons/ha for each of the four
sites.

Basal area (BA) is a useful index of forest structure as it combines
numbers of trees per unit area (tree stocking density, TSD) with their
sizes. It is the proportion of a sample area occupied by the sum of the
cross-sectional areas (1.3 m above ground) of all tree stems in the plot,
expressed as m? stems/ha (Bettinger et al., 2017). The stem

cross-sectional area of each tree was calculated from the GBH mea-
surements, mentioned above (Eq. (3)):

BA;= GBH?/(4r x 10%) (3)
... Where BA; is individual tree stem basal area (mz), GBH is tree girth at

breast height (cm). Individual-tree BA; values were summed to derive
the plot BA values in m?/ha (Eq. (4)):

BA =3BA; x (10,000 /78.5) &)

2.3. Vegetation area index (VAI) derived from LiDAR point clouds

In each of the same circular sample plots, a vegetation area index was
derived from terrestrial laser scanning, using a FARO Focus Core LiDAR

LiDAR scan positions €
Reference spheres

PCA, Densiometer, HP s

Masking tape

(a)

(b)

Fig. 2. (a) Setup for measurements in each 5-m radius sample plot. Measurements at the central point of each plot were made by light detection and ranging (LiDAR),
plant canopy analyser (PCA), forest densiometer and hemispherical photography (HP). (b) One of the reference spheres used for merging LiDAR point clouds.
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scanner (Faro Technologies, Inc., USA), mounted on a tripod, to acquire
the 3-D structure of the forest as a point cloud. The scanner was set to 1/
16 resolution and 4x scan quality (each point being scanned four times)
in all sample circles. Color and texture were added to the point cloud
from the parallel RGB camera. The scanner was controlled by an Apple
iPad Air 3 (Apple Inc., 2018) via Wi-Fi. The scans were repeated in five
positions in each circle: in the plot center and on the circular plot
circumference in the due north, east, south and west positions (Fig. 2).
This approach was recommended by Liang et al. (2016) to deal with the
problem of trees obscuring each other within a single scan. To combine
all five scans, into a single point cloud, five references spheres were
placed in fixed positions in each of the sample plots, shown in Fig. 2a.
These reference spheres were custom-made by placing a 20-cm sphere
pole light (Luzino; Jewel PO8-WH) on a 1.5-m camera stand (Fig. 2b).
Furthermore, the reference spheres were marked with colored masking
tape, to prevent confusion during merging the scans (scan registration).

All scan data in each plot were processed using Faro SCENE software
(version 2023.1.0; Faro Technologies, Inc. USA). For merging the five
point-clouds in each plot, we employed the manual registration method,
using reference sphere identification (SCENE, 2022). During manual
registration, the software positions each individual model into the main
model one at a time.

At least two identical locations or objects (reference spheres in our
case) must be spotted in each pair of scans (Fig. 3a). Typically, the mark
sphere tool was used to locate the reference sphere. However, if the
sphere was obstructed, the tool can fail to fully detect it. In such cases, a
mark point was used to assign the reference spot on part of the sphere or
surrounding area. After registration, the merged model was trimmed to a
10 m x 10 m square, to fit the circles (5 m radius) used for AGC mea-
surements. The point cloud was then exported in LAS format for VAI
analysis. Raw and processed point cloud densities are presented in the
supplementary materials (Table S1)

Model analysis involved (i) model preparation (Atkins et al., 2018)
and (ii) index calculation (Taheriazad et al., 2019) (Fig. 4). Model
preparation was performed using the lidR package (Roussel et al., 2020)
in R language. First, a digital terrain model (DTM) was created, using the
‘classify ground’, ‘filter ground’ and ‘rasterize terrain’ functions,
sequentially. The DTM was then subjected to height normalization,
using the ‘normalize height’ function to flatten the ground. Then, points
lower than 1.2 m were removed, to eliminate ground flora including
small tree saplings. To remove noise, we used the ‘stray points filter’
function in the Faro SCENE software after the model registration. The
distance threshold was set to 3 cm with the allocation threshold at 33.33
%.

VAI was then calculated from the processed 3D LiDAR point cloud

Reference sphere

-~

Reference sphere

Scanner 2

@

Scanner 1

(a)
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(Fig. 4). VAI is defined as the total surface area of all vegetation com-
ponents (leaves, stems, branches, etc.) per unit ground area (a dimen-
sionless proportion) (Atkins et al., 2018; Taheriazad et al., 2019). To
calculate VAI, the number of points was observed within subsample
boxes called “voxels”. For the dimensions of each voxel see Egs. (5) and

(6).

Voxel dimension = Uength) X Wwidtm) X D (5)

... where uis 10 x res (mm) and D is the average width of the leaves (m).

res=R-A¥Y 6)

. where res is the model resolution (mm), R is the distance to the
observed point (m), and AY is the angular resolution of the scanner
(microradian, prad).

Within each voxel, the number of points was limited to three, to
address unevenness of point distributions. The approach to set a
maximum threshold of 3 points. We used the ’length()’ function to count
the number of points in each voxel in the data frame. Then, an ’if...else’
conditional to re-assign the point number count to ’3’ in any voxel
exceeding three points. Subsequently, the total number of points in all
voxels was multiplied by the average area of a single leaf, to calculate
the VAI value of the model (Eq. (7)) (Taheriazad et al., 2019).

_ No. of pointsxAverage single leaf area (m?)

Al
v Total ground area (m?)

@)

All model processing was done on a Victus 16 laptop (HP Inc., 2021)
with AMD Ryzen 5 5600H CPU, NVIDIA GeForce RTX 3050 laptop GPU,
and 16 GB DDR4 3200 MHz RAM.

2.4. Leaf area index (LAI) using plant canopy analyser

A Li-Cor LAI 2200c (Li-Cor Biosciences, Inc., USA) plant-canopy
analyser was used to measure LAI values in the sample plots. The
scanner compares light conditions above the canopy—A (sky)—with
those below it—B (target). Since our study employed a single optical
sensor, the A readings were made using the 4A sequence shown in
Table 1, to measure the average light conditions of the sky (K record).

To provide shade, the sensor was placed in the operator’s shadow. All
readings were done facing the same direction. How frequently the K
record was made depended on sky conditions. For example, when the
sky was clear and cloudless, the K record procedure was conducted
hourly. However, when scattered clouds resulted in changeable sky
conditions, the A and B measures were made in close succession.

The below-canopy B reading was made at the central point of each

B Non-ground
B Ground

(b)

Fig. 3. (a) Two reference spheres spotted in both scan points of view. (b) the classified and flattened model.
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Fig. 4. Workflow of VAI calculation from a point cloud model, obtained with a terrestrial LIDAR scanner. Upper; model preparation, lower; index calculations. Here,
the yellow box is a voxel containing 3 LiDAR points (blue circles) of dimensions u x u (ten times the resolution (10 x res; mm)) x D (average width of the leaves (m)).

Table 1
Attachments and readings for the 4A sequence used to compile the K record.
Reading Attachments
# Diffuser Shade
1 v -
2 v v
3 - —
4 - v
270° Diffuser

Fig. 5. View caps of plant canopy analyser.

sample plot, 1.2 m above the ground. Scans were done three times in
each plot with the sensor facing north. All readings in every plot were
performed with the 270° view cap on (Fig. 5) to avoid direct sunlight
and the operator’s shade. The time at which each reading was made was
recorded for configuration during post-processing.

All readings from the LAI-2200c were imported into the FV2200
software (version 2.1.1; Li-Cor Biosciences, Inc., USA) via a USB cable.
Corresponding K values were assigned with all configurations and pa-
rameters selected according to the sampling conditions and compared
with B values to calculate LAI (Egs. (8) and (9)).

_ Diffuse intensity below the canopy at view angle 0
" Diffuse intensity above the canopy at view angle ¢

() ®

... where T(0) is gap fraction of the given view angle (ring).

5
LAl = -2 In(T(6;))cost;o (6;) 9

i=1

... where o (6;) is the constant weight factor for each ring, and i refers to
each of the detector rings with view angle centered at ;.

2.5. Canopy cover from hemispherical photography

Hemispherical photographs were taken with a digital camera (Fuji-
film model X-E4; Fujifilm Corporation, Japan) fitted with a MEIKE 6.5
mm F/2.0 fisheye lens (Hongkong MEIKE Digital Technology Co., Ltd,
China). The camera was attached to a tripod 1.2-m above the ground at
the center of each sample plot, with the lens pointing direct upwards
towards the zenith. The flash socket of the camera was always posi-
tioned in the north direction. The exposure values (EV) were incre-
mentally reduced by 0.3 until no overexposed pixels were detected on
the camera screen (Beckschafer et al., 2013). Before every exposure, the
operator positioned himself below the camera, to ensure that no extra-
neous elements are visible within the frame.

The photos were imported into ImageJ (version 1.48) (Schneider
et al.,, 2012) and analyzed using the Hemispherical 2.0 plug-in
(Beckschafer et al., 2015) for canopy parameter analysis. The software
converted raw hemispherical photographs (Fig. 6a) into black and white
binarized photographs (Fig. 6b). Canopy cover was calculated as the
percentage of white pixels in the binarized image.

2.6. Canopy cover from forest densiometer

A spherical densiometer, model A, (Forest Densiometers, USA,
Fig. 7a) was also used to quantify canopy cover in each sample plot. The
instrument consisted of a convex mirror with a grid of 24 squares
engraved upon its surface. To estimate canopy cover (CC), the instru-
ment was leveled horizontally 1.2 m above the ground. Each square was
divided into quarters in the mind’s eye. The number of quarter-squares
reflecting mostly sky was counted and multiplied by 1.04, to obtain an
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Fig. 6. (a) an input hemispherical photograph from the fisheye lens from the R22, 10th plot, captured on November 18, 2023; (b) the corresponding output
binarized-hemispherical photograph for gap-fraction analysis (black = sky; white = canopy).

o
@woskh T
- o)
RN DB g o J
s L enons ol

(a)

(b)

Fig. 7. (a) Forest densiometer model A, showing grid of 24 squares engraved upon the surface of a concave mirror; (b) example of forest densiometer quarter
squares, reflecting mostly sky, counted—indicated by red dots: R12, 5th plot, taken on November 18, 2023.

estimate of the gap-fraction (GF) per cent (because there were 96 (not
100) quarter squares in the grid) (Fig. 7b). The gap-fraction per cent was
subtracted from one hundred, to derive an estimate of the canopy-cover
per cent (Eq. (10)). This was repeated four times in each sample plot
(facing each of the cardinal points) and the values averaged.

CC = 100 — (GF x 1.04) (10)

. where CC is canopy cover (%) and GF is the number of quarter
squares with visible sky. For example, Fig. 7b shows ten open quarter
squares, corrected to 10.4 %. Therefore, the estimated canopy cover is
89.6 %. Images of the forest densiometer were captured from the sample
plots with the operator’s perspective, for future evaluation.

3. Results

In thirty-two sample plots, mean values of all metrics, trended
similarly across all four sites; from lowest values in the non-planted
control site (CT), increasing sequentially from younger (R22) to older
(R12) restoration sites, with maximum values attained in the reference
forest (Tables 2 and S2).

Increases in mean VAI, LAI and CC_D, between CT and R22 (control
and 1'% year-old restoration), were significant (P < 0.05, ANOVA) and
substantial (per cent increases of 157, 131 and 1171 for VAI, LAI and
CC_D respectively, derived from Table 2). All metrics clearly distin-
guished between young and older restoration. Increases in all metrics
between 1% (R22) and 11'-year-old restoration (R12)—both
instrument-based and conventional—were significant (P < 0.05) and
substantial (per cent increases of 77.5, 115.0, 49.0, 45.4 for VAI, LAI,
CC_HP, CCD and 419.9, 149.0 and 335.0 for AGC, TSD and BA,
respectively).

Comparing all metrics between R12 and the reference forest revealed
how closely structural development of the 11! year old restoration
approached that of reference forest (RF). By 11 years, mean values of
instrument-based metrics in R12 had attained 89.6-97.7 % of reference-
forest values (derived from Table 2), and the small differences between
R12 and RF were statistically insignificant (P > 0.05). Considering the
conventional metrics, mean TSD in R12 was 81.3 % of the RF value,
whilst mean BA in R12 was 73.3 % of the RF value. Again, neither of
these differences were statistically significant (P > 0.05), i.e. all in-
strument metrics, and two of the conventional metrics (TSD and BA) did
not clearly distinguish between advanced restoration and the reference
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Mean metric values and one-way ANOVA results from each sampling site. CT; non-planted control, R22; restoration forest planted in 2022, R12; restoration forest
planted in 2012 and RF; reference forest. VAI=vegetation area index; LAI=leaf area index; CC_HP and CC_D are canopy cover by hemispherical photography and

densiometer, respectively; AGC=above-ground carbon; TSD= tree stockings density and BA= basal area.

Instrument-based measurements Conventional measurements
Site VAI LAI CC_HP CC D AGC TSD BA
Mean + SD Mean + SD Mean + SD Mean + SD Mean + SD Mean + SD Mean + SD
- (%) (%) (tC/ha) (stems/ha) (m*/ha)
r% CT | 0.370°+£0.45 | 0.765"+1.08 | 52.073" +10.50 | 4.840"+10.39 0.000* + 0.00 0.000% + 0.00 0.000% £ 0.00
[}
° R22 | 0.950°£0.49 | 1.771°£1.23 | 57.260° £ 19.20 | 61.520°+29.32 | 12.668" + 13.38 780.255" + 516.05 7.850° + 6.77
m
E RI12 | 1.686°+0.27 | 3.807°£0.90 | 85.299°+5.64 | 89.470°+5.26 65.866° + 30.44 1942.675°+ 552.13 | 34.146°+ 13.41
o
r% RF | 1.725°+£0.10 | 4246°+£0.37 | 92.977°+1.29 | 93.630°+1.96 137.4519+ 83.19 | 2388.535°+ 1043.28 | 46.549° + 24.36
z
=

Values not sharing the same superscript are significantly different among sites (P < 0.05).

forest. Only AGC, was significantly lower in the R12 site than in the
reference forest, attaining 47.9 % of the reference-forest value (in 11'%
years) (P < 0.05).

Fig. 8a presents correlation coefficients (r), indicating the strengths
of the relationships between the metrics, across all 32 plots. Most of the
metrics were highly correlated with one another. Considering how well
instrument-based metrics (VAI, LAI, CC_HP and CC_D) indicate con-
ventional ones (AGC, TSD and BA), correlations between AGC and
instrument-based metrics were moderate, with CC_HP having the
strongest relationship (r = 0.67). However, the relationships between
AGC and the other instrument-based metrics were only very slightly
weaker (VAL r = 0.64; LAI, r = 0.63 and CC_D, r = 0.58)

Correlations between TSD and instrument-based metrics were all
stronger. The strongest relationship was with LAI (r = 0.80), but it was
only marginally stronger than the relationships between TSD and the
other three instrument-based metrics. Correlations of instrument-based
metrics with BA were also strong. The strongest relationship was with
CC_HP (r = 0.75), which was only slightly stronger than with the other
instrument-based metrics.

In contrast, within each of the four individual study sites, correlation
coefficients, based on eight circular sample plots in each (Fig. 8b-e),
were generally weaker and somewhat erratic. Since no trees were pre-
sent in the sample plots in CT, no correlations between instrument-based
metrics and conventional metrics could be derived (Fig. 8b).

In the young restoration plot (R22), the instrument-based metrics,
which had the strongest relationships with conventional metrics, were
CC_HP and LAI with TSD (r = 0.71 and 0.65 respectively) and VAI with
AGC (r = 0.63) (Fig. 8c). In the older restoration plot (R12), the stron-
gest correlations between instrument-based and conventional metrics
were between VAI with AGC (r = 0.67) and BA (r = 0.55) (Fig. 8d). In the
reference forest, correlations were weaker. CC_HP correlated most
strongly with BA (r = 0.42) (Fig. 8e). Other correlations between
instrument-based and conventional metrics were much weaker.

4. Discussion

This study compared instrument-based metrics (VAI, LAI, CC_HP,
and CC_D) with conventional metrics, derived from direct, manual, tree
measurements (AGC, TSD and BA), to monitor forest structural recovery
during restoration by the framework species method (FSM) (Elliott et al.,
2022). The relative advantages and disadvantages of all seven metrics
investigated are summarized in Table 3. The study also demonstrated
the extent of development of forest structure achievable over the first
decade after implementing the FSM.

4.1. Instruments and metrics

Information content of the instrument-based metrics increased from

CC_D and CC_HP (degree of canopy closure), to LAI (canopy density
including beyond initial canopy closure) and VAI (canopy physical
structural complexity — including leaves and branches etc.).

4.1.1. LiDAR and VAI

The advantage of terrestrial LiDAR is that it physically scans all forest
structures (including leaves and branches) and combines them all into a
single index—in this case VAI. Thus, the information content of the
derived metric is much higher than that of the other instrument-based
metrics in this study. Although the technique registered a non-zero
value for the control plot (due to tall weeds and occasional shrubs), it
clearly distinguished differences in structural development between the
CT, R22 and R12 plots, but not between the R12 and RF plots (Table 2).
VAI also correlated well with all conventional metrics, when considering
the combined data from all plots (Fig. 8a).

However, the method appeared to underestimate forest structural
development in RF. VAI values in R12 and RF were statistically indis-
tinguishable, whereas AGC in R12 was, significantly, less than half that
of RF. A problem with using terrestrial LiDAR in dense forest is that low
branches and other close objects can block scanning of more distant
structures, particularly those in the canopy (Liang et al., 2016; Torralba
et al., 2022). This may have reduced the VAI in RF, such that the dif-
ference in mean VAI's between R12 and RF was less than expected, when
compared with the difference in AGC measurements. It might also
explain the low correlation coefficients between VAI and the conven-
tional metrics in both R12 and RF (Fig. 8d & e).

In an attempt to address this issue, we combined five scans per plot
(Fig. 2), since previous researchers have shown that using multiple scans
(3-5) improves accuracy of the technique, compared to a single scan
(Torralba et al., 2022). Despite this, under-estimation of VAI in RF was
still apparent at the 1/16 resolution and 4x scan quality, used for this
study. Higher resolutions should therefore be tested in the future,
although high-resolution scanning considerably increases the fieldwork
time needed. In contrast, Ehbrecht et al. (2017) successfully used single
scans to generate the newly developed “stand structural complexity
index” (SSCI), which holistically quantifies the spatial arrangement of
plant material in forests. Furthermore, combining terrestrial and
airborne LiDAR point clouds, has recently generated some impressive
results for capturing forest structure, under various environmental
conditions (Zhang et al., 2023). Therefore, we recommend further
studies on the effects of scanning configuration and resolution, and on
combining terrestrial and aerial LiDAR point clouds.

Considering the practicalities of using LiDAR for monitoring forest-
restoration progress, setting up the tripod in five locations within 10-
m-diameter circles resulted in considerable trampling of tree saplings
in the undergrowth, which may have affected subsequent forest regen-
eration. The instrument, the reference spheres and their tripods are
bulky, and great care must be taken when transporting them and setting
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Table 3
The pros and cons of four instrument-based and three conventional metrics for tracking progress of forest-structure development during forest-ecosystem restoration.
Method Metric Cost Labour Time Trampling Advantages Disadvantages
required needed risk
LiDAR Vegetation Very high Moderate High =~ High if Direct scanning of all forest structures Bulky. Complicated set-up.
area Index (equipment) manual multiple Steep learning curve.
(VAD) survey scans Obstruction by low objects may
necessitate multiple scans.
Plant canopy Leaf area Moderate Low Moderate Moderate Takes into account increases in canopy ~ Only considers leaf canopy.
analyser index (LAI) density beyond canopy closure. Frequent open-sky readings are
Compact. needed when there are
scattered clouds.
Hemispherical Canopy cover Moderate Low Moderate Low to Compact. Objective and precise. Fiddly set-up and exposure
camera (CC_HP) moderate settings. Disregards multiple
leaf layers beyond canopy
closure. Saturates at 100 %.
Densiometer Canopy cover Low Low Low Low Very compact and lightweight. Subjective readings. Disregards
(CC.D) multiple leaf layers beyond
canopy closure. Saturates at
100 %.
Conventional Above-ground  High (labour/ High High Very high Well-established direct measurements. High cost due to high labour/

carbon (AGC)
Tree stocking
density (TSD)
Basal area
(BA)

forest survey transport)

All derived from the same dataset.
Results are comparable with other
studies. Cheap materials and
equipment.

transport requirements. Does
not include canopy
measurements.

them up. Post-processing of point clouds involves a steep learning curve.
Crucially, terrestrial LiDAR scanners are very expensive
(30,000-100,000 USD). The prospect of routinely using them to verify
carbon credits, for example (Suwannarat et al., 2024), seems remote,
until they become more affordable and user-friendly.

4.1.2. Plant canopy analyser and LAI

A plant canopy analyser uses algorithms to infer an index of canopy
density indirectly from the attenuation of light, as it passes through the
forest canopy; it does not register forest structure directly, like LiDAR
does. An LAI of <1 indicates incomplete canopy closure; “1” indicates
cover by a single layer of leaves (on average); “2” by a double layer of
leaves—and so on. Even after complete canopy closure, differences in
light readings between the open sky and beneath the forest canopy
should increase further, with increasing canopy density, i.e. the metric
should not saturate at 100 % canopy cover.

LAI and VAI results were similar, in that LAI registered a non-zero
value in the control plot, due to tall herbaceous weeds and shrubs,
and it clearly distinguished differences in canopy development between
the CT, R22 and R12 plots, but not between the R12 and RF plots
(Table 2). Similarly, LAI also correlated well with all conventional
metrics, when considering the combined data from all plots (Fig. 8a). As
with VAL however, the failure of LAI to distinguish between advanced
restoration (R12) and the reference forest (RF), did not reflect the more
than doubling of AGC between the two sites. Furthermore, correlations
with conventional metrics in the denser plots (R12 and RF) were poor.
Therefore, it seems that further increases in the canopy density, after
canopy closure, are poorly related with further light attenuation.

Costing around 1000-15,000 USD, plant canopy analyzers are
cheaper than LiDAR. They are easier to deploy than LiDAR, and can be
used by a single observer, thus minimizing trampling of young tree
seedlings. However, the need to make frequent open-sky readings (using
a single sensor device) imposes difficulties. If the below-canopy sample
points are far from the forest edge, the time interval between open-sky
and under-canopy readings becomes unacceptably long, particularly
when cloud conditions are changeable. This highlights the difficulty of
using a passive-sensor device under variable ambient light conditions.

4.1.3. Canopy cover

Both the hemispherical camera and the densiometer measure canopy
cover (CC) by subtracting the amount of visible sky from a ground-up
view of the forest canopy and assigning remaining pixels as “canopy”.

Once no sky becomes visible (i.e. complete canopy closure), however,
they return a CC of 100 %, no matter how many additional layers of
leaves and branches grow and augment canopy density thereafter
(Dassot et al., 2011; Huete et al., 2012; Pretzsch et al., 2019). The
pattern of CC_D results was the same as those of VAI and LAIL The metric
returned a non-zero value for the control plot and distinguished between
the CT, R22 and R12 plots, but not between the R12 and RF plots
(Table 2). It also failed to reflect the doubling of AGC between R12 and
RF. CC_D correlated similarly well with the conventional metrics across
all plots (Fig. 8a). Once again, correlations with conventional metrics in
the denser plots (R12 and RF) were mostly very low (except for TSD in
R12, r = 0.48) (Fig. 8d).

Hemispherical photography registered an obvious anomaly—52.1 %
canopy closure in the control site (CT), where no trees grew (compared
with 4.8 % from the densiometer) (Table 2). Although the camera’s
exposure value (EV) was manually adjusted, to prevent over- or under-
exposure (which may lead to errors in the CC estimation), the camera
still included trees at the edge of the plot in images, due to the steep
slope and the wide field of view of the hemispherical lens (zenith angle
= 90°) (Figure S3). To mitigate this in the future, hemispherical photos
should be analyzed by other methods with smaller zenith angles, such as
Can-Eye software (zenith angle = 60°), to identify vegetation cover on
steep terrain with more certainty (Khokthong et al., 2019; Weiss and
Baret, 2017).

In common with all other instrument-based metrics CC_HP was
significantly higher in R12 than in R22, but the metric failed to distin-
guish between R12 and RF. As with other instrument-based metrics,
correlations with conventional metrics weakened as structural devel-
opment increased (Fig. 8c-e).

The main difference between the two canopy-cover instruments is
that hemispherical photography employs a precise, objective procedure
to subtract sky pixels from an image, whereas readings from a densi-
ometer are more subjective, particularly if the instrument and viewing
angle are not perfectly steady. However, a densiometer can be operated
by non-skilled personnel, as it simply involves counting spots on a grid.
In contrast, set-up and operation of a hemispherical camera are highly
technical, and post processing images requires considerable expertise
and training. Furthermore, hemispherical cameras are more expensive
(1200-1500 USD) than densiometers (200-300 USD).
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Fig. 9. (a) Initial conditions at the R12 restoration site on planting day (28/07,/2012), with the edge of the adjacent reference forest (RF) visible top left. Note the
landmark bamboo clump lower left. (b) A closer view of the same site 11% years later (08/11/2023). The restored forest (to the right) is almost indistinguishable

from the reference forest (to the left) (Photos: Stephen Elliott).

4.2. Conventional forest surveys

All conventional metrics were obtained from the same manual
measurements of trees of GBH>5 cm in all circular sample plots, using
standard, survey techniques, carried out by teams of 5-6 people. The
information content of the metrics increased from TSD (tree counts) to
BA (tree counts and tree sizes (GBH)) and AGC (tree counts, sizes (GBH
and height) and wood density).

Structure is built from biomass, of which 45 % is carbon (Eq. (2)).
Therefore, as AGC increases, so should the structural complexity of the
forest, as the carbon becomes partitioned among an increasing diversity
of structural components. This should have been reflected by strong
correlations of AGC with instrument-based metrics of structural devel-
opment. In general, correlations of AGC with instrument-based metric
were moderate, becoming weak in the R12 and RF plots. This may have
been because calculation of AGC is sensitive to wood density (Eq. (1)), a
variable which was “invisible” to all the instrument-based metrics.
Furthermore, all four instrument-based metrics failed to reflect the
doubling of AGC between R12 and RF, suggesting their inability to
register further increases in forest structural complexity, beyond canopy
closure.

It is interesting to note that correlation of conventional metrics with
all instrument-based metrics declined with increasing information con-
tent of the conventional metrics i.e. TSD correlated most strongly with
all four instrument-based metrics, followed by BA, with AGC correlating
most weakly (Fig. 8a). This may have been because potential sources of
variability increase with information content. This assertion was sup-
ported by calculating the coefficients of variation (CV) from the data in
Table 2 (standard deviation expressed as a percentage of the mean,
Table S3). CVs for conventional metrics were highest for AGC and lowest
for TSD, consistently across all 3 forested sites.

The most common sources of potential error in field measurements
included determining if trees on the perimeter of the circular sample
plots should be counted in or not, and the difficulty of seeing tree tops
for height measurements in R12 and RF, where high canopy density
obscured the view. Field surveys are costly, due to high labour and
transport requirements. Furthermore with the large teams of surveyors,
required, trampling of young tree seedlings is inevitable, potentially
impeding future understory development and carbon absorption.

4.3. Recovery of forest structural complexity by the framework species
method

Fig. 9 shows visually how effective the FSM is at restoring forest
structure over the first decade following initial implementation.
The data, presented above, verify and quantify this visible recovery
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of forest structure. Planting of framework tree species augmented nat-
ural regeneration, to achieve an initial stocking density of 3100 stems/
ha, mostly of saplings 30-60 cm tall. However, the TSD metric, included
only those saplings and trees that had survived and grown large enough
to attain a GBH of 5 cm of more by the survey time. By 14 years, the R22
mean values of TSD, BA and AGC amounted to 32.7 %, 16.9 % and 9.2 %
of the mean reference-forest (RF) values (all significantly lower, P <
0.05, Table 2)—due almost entirely to a few remnant forest trees that
remained on the site at planting time. However, by 11% years, the R12
mean values of TSD, BA and AGC had increased to 81.3 %, 73.3 % and
47.9 % of the mean RF values respectively. R12 values of TSD and BA
were statistically indistinguishable from RF values. However, mean AGC
in the R12 plot remained significantly lower than the RF value. The
result for mean AGC was remarkably close to that from another study of
carbon accumulation during restoration of evergreen forest above Ban
(=village) Mae Sa, 10 km to the south-east, at the same elevation also
using the FSM. In that study, mean tree carbon accumulated in 12-year-
old restoration plots was 49 % of the mean reference forest value
(FORRU-CMU, 2025). The close reproducibility of the result strongly
suggests that during application of the FSM, carbon accumulation lags
behind other metrics of structural development, with instrument-based
canopy metrics approaching reference-forest values earlier than mea-
surements of forest-carbon.

5. Conclusions

In conclusion, the hypothesis that forest canopy metrics, measured
by the four instrument-based techniques listed above, could be used to
monitor and differentiate states of restoration of upland evergreen-forest
in northern Thailand was only partially supported. Whilst all
instrument-based techniques successfully distinguished among early
restoration stages, once canopy closure reached about 85-90 %, they
failed to distinguish further progression towards reference forest con-
ditions. This conclusion was also supported by the fact that correlations
between instrument-based and conventional metrics weakened with
increasing forest structural development.

Of the four instrument-based metrics tested in our study, we
recommend CC_D as the most cost-effective indicator of forest structural
development, up until the point of canopy closure, for the following
reasons:

1. It distinguished among CT, R22, and R12 almost as well as the other
metrics (Table 2).

2. It correlated well with other instrument-based metrics across all
plots.
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3. It showed comparable strength of correlation with conventional
metrics (r = 0.58-0.77; Fig. 8a).

4. A single person can operate it, thus minimizing trampling of
seedlings.

5. It is simple to use with minimal training.

6. Results are immediate, with no need for complex post-processing.

7. Its cost is only a fraction of that of the other instruments evaluated.

Beyond canopy closure, however, AGC derived from manual tree
measurements, remains the most reliable indicator of forest structural
development, combining direct measurements of tree size and wood
density with stocking density. However, the high labour requirement
and high cost of carbon surveys, and their potential impact on under-
storey development, remain as strong deterrents to its widespread use.

There remains a need for more reliable and cost-effective methods to
track carbon accumulation and structural development during forest-
ecosystem restoration. To avoid damaging the forest understory
through ground surveys, above-canopy indices, derived from drone
imagery aerial LiDAR, may offer the best solution (Spiers et al., 2025).
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